
CFSCQ: Extending a 
verified file system with 

concurrency
Tej Chajed

advised by Frans Kaashoek and Nickolai Zeldovich

SRC #14

 1



Goal: verify a concurrent file 
system

• Existing verified file systems are sequential

• e.g., FSCQ, Yggdrasil, BilbyFS

• All real file systems are concurrent 

• e.g., ext4, btrfs

 2



CFSCQ re-uses FSCQ 
(a verified sequential file system)

• FSCQ: 75,000 lines 

• CFSCQ: +6,000 lines 

• Concurrency verified separately from sequential 
behavior

 3



What can we achieve 
without modifying proofs?

• Make disk reads asynchronous 

• Run read-only system calls on multiple cores 

• Leverage FSCQ code, spec, and proof for bulk of 
concurrent implementation

 4



Asynchronous reads allow system calls to 
read from memory while disk is reading

CPU Disk
rename

read

rename

 5

other 
syscall



Asynchronous reads allow system calls to 
read from memory while disk is reading

CPU Disk
rename

other 
syscall

rename 
restarts

rollback 
writes read

 6



Read-only system calls run 
on separate cores

Core1 Core2
read

stat

stat

 7



Read-only system calls run 
on separate cores

Core1 Core2
read

stat

stat

Core3

rename

read-only

updates

 7



Read-only system calls run 
on separate cores

Core1 Core2
read

stat

stat

Core3

rename

snapshot initial stateread-only

updates

 7



Read-only system calls run 
on separate cores

Core1 Core2
read

stat

stat

Core3

rename

snapshot initial stateread-only

updates

update state

 7



Read-only system calls run 
on separate cores

Core1 Core2
read

stat

stat

Core3

rename

snapshot initial state

with write lock

read-only

updates

update state

 7



Progress

• Verified asynchronous disk reads and multicore 
concurrent reads 

• Asynchronous disk reads improve throughput with 
slow I/O 

• Working on performance and scalability of 
multicore reads

✔

✔

 8


