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Goal: verify a concurrent file 
system

• Existing verified file systems are sequential

• e.g., FSCQ, Yggdrasil, BilbyFS

• All real file systems are concurrent 

• e.g., ext4, btrfs
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CFSCQ re-uses FSCQ 
(a verified sequential file system)

• FSCQ: 75,000 lines 

• CFSCQ: +6,000 lines 

• Concurrency verified separately from sequential 
behavior
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What can we achieve 
without modifying proofs?

• Make disk reads asynchronous 

• Run read-only system calls on multiple cores 

• Leverage FSCQ code, spec, and proof for bulk of 
concurrent implementation
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Asynchronous reads allow system calls to 
read from memory while disk is reading

CPU Disk
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rename
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Read-only system calls run 
on separate cores
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Progress

• Verified asynchronous disk reads and multicore 
concurrent reads 

• Asynchronous disk reads improve throughput with 
slow I/O 

• Working on performance and scalability of 
multicore reads

✔

✔
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