
Record Updates in Coq
Tej Chajed

tchajed@mit.edu

Abstract
We describe the implementation of coq-record-update, a li-
brary that generates functions to set and update fields of
Coq records to complement Coq’s existing support for field
projections. The implementation abuses features of Coq type-
classes and is thus fun to describe. The library has industrial
and academic users that are not in the authors’ institution,
which lends credibility to the assertion that it is useful.

1 Introduction
Coq has record projections, but no way to update a field.
Updating a record field is tedious and error-prone, requiring
writing code that constructs a new record where all but one
field comes from the old record. But records and updates
to records do come up, particularly when reasoning about
messy real-world objects which have lots of little bits of state
that need to be managed independently.

The coq-record-update library provides a solution to this
problem. First, a short example of using the library:
From RecordUpdate Require Import RecordUpdate.

Record X := mkX { A: nat; B: nat; C: bool; }.
Instance: Settable X := settable! mkX <A; B; C>.
Definition add3_to_B x := set B (plus 3) x.
Definition set_B_to_3 x := set B (fun _ => 3) x.

What’s going on here? The user writes a bit of boilerplate
settable! mkX <A; B; C> telling the library the construc-
tor and fields (listed as projection functions) for the record.
Then, set is usable as a function that takes a field of type X
-> T and returns a setter function of type (T -> T) -> (X
-> X), which updates the field based on its current value. On
top of this the library has some nice notations (for example,
set_B_to_3 x can be written x <|B:=3|>) and nested up-
dates, but these are standard notations that could be defined
outside the library — the magic is really all in set.
The user does have to write some boilerplate in order to

provide a list of field projections for X. This isn’t too bad, but
it is boilerplate we unfortunately can’t eliminate (without a
plugin, at least) since there’s no way in Ltac or Ltac2 to go
from a record type to the projection functions Coq created
for that record.

The library is open-source, available on GitHub at https://
github.com/tchajed/coq-record-update, and installable with
opam.

CoqPL ’21, January 19, 2021, Online
2020.

Wait, how can that possiblywork?!As described above
this seems pretty unreasonable, from an implementation per-
spective. How could set do what it’s supposed to do? The
implementation uses an interesting feature of typeclasses.
The Coq implementation of typeclasses is relatively sim-
ple [1]: a typeclass is basically a record whose value Coq will
fill in using a proof search using only typeclass instances.
These proof searches can invoke Ltac, and thus a typeclass
“instance” can actually be resolved using code rather than
just fixed lemmas. The result from a user’s perspective is
that set x y can actually run arbitrary Ltac code between
seeing set x and y, by having a typeclass as an implicit
argument to set and resolving that typeclass with Ltac. Of
course that’s exactly what we’ll do.

2 Representing a generic record
Beforewe can see how setworks, let’s first cover the Settable
X typeclass and how its instance is constructed. The class
itself is pretty boring:

Class Settable R :=
mkR: R -> R.

The value of mkR is always extensionally equivalent to
the identity function. But we won’t just be calling it, we’ll
actually use Ltac to look at the syntax of how the instance
was constructed. In the example above, mkR is defined as:

mkR x = mkX (A x) (B x) (C x)

This is a fancy identity function that copies x by construct-
ing a new record of type X whose fields are all drawn from
x. I call this term the record’s “eta expansion”. Why is this
useful? The key is that now all we need to do to update a
field, say B, is to replace B in this expression with 𝑓 ◦ B in
order to apply an update function f : nat -> nat. That
manipulation is purely syntactic and we can do it in Ltac.

3 Building a setter using Ltac
Now we can explain what set is doing. First, set is actually
just the single field of a typeclass:

Class Setter {R T} (proj: R -> T) :=
set : (T -> T) -> (R -> R).

Instances of this class are resolved by Ltac that does the
following:

• Resolve Settable R to produce a Gallina term of type
R -> R, the previously-described fancy identity func-
tion or eta expansion.

https://github.com/tchajed/coq-record-update
https://github.com/tchajed/coq-record-update

CoqPL ’21, January 19, 2021, Online Tej Chajed

• Call pattern proj over that term to abstract over
where the field is reconstructed. For our running ex-
ample X and its field B, this produces a term (fun proj
=> fun x => mkX (A x) (proj x) (C x)) B.

• With Ltac patternmatching, extract the function, which
is of type (R -> T) -> (R -> R). This is almost what
we want but set only passes the field value to the
function, not the whole record, so for set fwe supply
𝑓 ◦ proj, which we write out in Coq as fun r => f
(proj r).

This Ltac runs as part of typeclass resolution by simply
placing a Hint Extern in the typeclass_instances hint
database. This is all that’s needed to program typeclass reso-
lution.

4 Improving the user interface
While the above implementation works, there’s one big
user-interface problem. What happens if the user writes
settable! mkX <B; A; C>, which mixes up A and B? This
still typechecks because the two fields have the same type,
but it would now mean setting A sets the B field and vice-
versa, which would be Very Bad. To address this, Settable
R actually has an additional field proving that mkR is the iden-
tity function, and settable! constructs a proof (on the fly,
using tactics-in-terms). As a result an incorrect declaration
will fail right away. The Setter Ltac also has some safe-
guards to prevent typeclass resolution when the user tries
to set a field that isn’t a projection, in which case set would
otherwise do nothing (also very bad).

5 But is this any good?
Anecdotally, it seems that SiFive is using this library (to
deal with records that define the state of a RISC-V processor,
particularly in the specification) as well as Bas Spitters’ group
in Aarhus. This makes coq-record-updatemymost successful
Coq library (so far).

Convenience The library has some nice safeguards to
prevent incorrectly listing the fields and attempting to set
non-projections. However, one still has to write out the fields
of the record once. We could do this automatically with a
plugin, but that would make the library harder to maintain
for me and harder to install for users. Ltac2 doesn’t solve
this either, since there’s no API to query for the projection
definitions.

Generality Typically I expect that users aren’t concerned
with generality, they just want to handle lots of fields. How-
ever, there are two interesting complications for setters: de-
pendent fields and type parameters. In general updating
dependent fields doesn’t work, because we’d have to update
multiple fields at the same time to preserve the type. How-
ever, updating non-dependent fields works seamlessly — the
eta expansion is well-typed as written for the remaining
dependent fields.

Type parameters are a little more awkward to write the
settable! boilerplate for, but it’s doable, particularly if the
fields have the parameters as implicit types. Changing the
type parameters in a set doesn’t work, because it would
require a more general type for set than (T -> T) -> (X
-> X).

Performance Generating setters is pretty efficient since
it only involves generalizing the expression in the Settable
instance. However, it does run once for each use of set in the
source. If this is a problem, the user can cache the typeclass
instance by declaring it ahead of time: Instance set_B :
Setter B :=_ will get resolved automatically and then get
used from then on.
The generated setters are as good as manually-written

ones using the record’s projections. Furthermore, the term B
(set B (fun _ => 3) x) immediately reduces to 3 (even
if x is a variable) because the setter expression starts with
mkX rather than pattern-matching on x.
Error messages settable! and set can fail for a few

reasons. settable! fails to typecheck if fields are missing or
have the wrong types; it reports a custom error if two fields
of the same type are swapped. set generally fails because
the Setter typeclass can’t be resolved. Unfortunately in
that situation we can’t provide a nice error message since
typeclass-resolution failure messages aren’t programmable.

6 Conclusions
coq-record-update is a small library to let you update record
fields. We explained how it is implemented, namely by abus-
ing typeclasses. You can find the library at https://github.
com/tchajed/coq-record-update or via the Coq opam repo.
If you use it and have feedback, please let me know!

References
[1] Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In

Theorem Proving in Higher Order Logics, Otmane Ait Mohamed, César
Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 278–293.

https://github.com/tchajed/coq-record-update
https://github.com/tchajed/coq-record-update

	Abstract
	1 Introduction
	2 Representing a generic record
	3 Building a setter using Ltac
	4 Improving the user interface
	5 But is this any good?
	6 Conclusions
	References

