
Efficient Implementation of an Abstract
Domain of Quantified First-Order

Formulas

Eden Frenkel1(B) , Tej Chajed2 , Oded Padon3 , and Sharon Shoham1

1 Tel Aviv University, Tel Aviv, Israel
edenfrenkel@mail.tau.ac.il

2 University of Wisconsin-Madison, Madison, WI, USA
3 VMware Research, Palo Alto, CA, USA

Abstract. This paper lays a practical foundation for using abstract
interpretation with an abstract domain that consists of sets of quantified
first-order logic formulas. This abstract domain seems infeasible at first
sight due to the complexity of the formulas involved and the enormous
size of sets of formulas (abstract elements). We introduce an efficient rep-
resentation of abstract elements, which eliminates redundancies based on
a novel syntactic subsumption relation that under-approximates seman-
tic entailment. We develop algorithms and data structures to efficiently
compute the join of an abstract element with the abstraction of a concrete
state, operating on the representation of abstract elements. To demon-
strate feasibility of the domain, we use our data structures and algorithms
to implement a symbolic abstraction algorithm that computes the least
fixpoint of the best abstract transformer of a transition system, which
corresponds to the strongest inductive invariant. We succeed at finding,
for example, the least fixpoint for Paxos (which in our representation
has 1,438 formulas with ∀∗∃∗∀∗ quantification) in time comparable to
state-of-the-art property-directed approaches.

Keywords: Abstract interpretation · First-order logic · Symbolic
abstraction · Invariant inference · Quantifier alternation · Least fixpoint

1 Introduction

Recent years have seen significant progress in automated verification based on
first-order logic. In particular, quantified first-order formulas have been used
to model many systems, their properties and their inductive invariants [1,6,9–
11,13–18,20,22,24,26,28,30,31]. Automatic verification in this domain is chal-
lenging because of the combination of the complexity of first-order reasoning
performed by solvers and the enormous search space of formulas, especially due
to the use of quantifiers. Despite these challenges, there are impressive success
stories of automatically inferring quantified inductive invariants for complex dis-
tributed and concurrent algorithms [9–11,14,15,17,26,30,31].
c© The Author(s) 2024
A. Gurfinkel and V. Ganesh (Eds.): CAV 2024, LNCS 14682, pp. 86–108, 2024.
https://doi.org/10.1007/978-3-031-65630-9_5

https://zenodo.org/doi/10.5281/zenodo.10938367
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-65630-9_5&domain=pdf
http://orcid.org/0009-0009-4589-2173
http://orcid.org/0000-0002-9889-4828
http://orcid.org/0009-0006-4209-1635
http://orcid.org/0000-0002-7226-3526
https://doi.org/10.1007/978-3-031-65630-9_5

Efficient Implementation of an Abstract Domain 87

Previous works on invariant inference for first-order logic search for invariants
in the form of sets of formulas (interpreted conjunctively) from some language
of quantified first-order formulas. Each approach fixes some restricted, typically
finite (but extremely large) language L, and searches for a set of L-formulas that
form an inductive invariant using sophisticated heuristics and algorithmic tech-
niques, such as property-directed reachability (IC3) [14,15], incremental induc-
tion [11,26], generalization from finite instances [9,17], and clever forms of prun-
ing and exploration [30,31]. While prior techniques can successfully handle some
challenging examples, the accumulation of specially-tailored techniques makes
the results computed by these techniques unpredictable, and makes it hard to
extend or improve them.

Abstract interpretation [4,5] suggests a more systematic approach for the
development of verification algorithms based on logical languages, where we
consider sets of L-formulas as elements in an abstract domain. The abstraction
of a set of states S in this domain is given by α(S) = {ϕ ∈ L | ∀s ∈ S. s |= ϕ},
i.e., the formulas that are satisfied by all states in the set. Algorithms based on
abstract interpretation are better understood and are easier to combine, extend,
and improve. However, an abstract domain of quantified first-order formulas
seems infeasible: for interesting systems, the abstract elements involved in proofs
would contain an astronomical number of formulas.

The main contribution of this work is to develop algorithms and data struc-
tures that make an abstract domain based on quantified first-order formulas
feasible. Working with this abstract domain introduces two main challenges:
(i) efficiently storing and manipulating abstract elements comprising of many
formulas, and (ii) overcoming solver limitations when reasoning over them. This
work focuses on the first challenge and adopts ideas from prior work [15] to deal
with the second. Our techniques lay a practical foundation for using an abstract
interpretation approach to develop new analyses in the domain of quantified first-
order formulas. We demonstrate feasibility of the abstract domain by applying
it to an analysis of several intricate distributed protocols.

Our first key idea is to design a subsumption relation for quantified first-
order formulas and use it to represent abstract elements (sets of formulas) more
compactly, pruning away some formulas that are redundant since they are equiv-
alent to or are entailed by another formula. Subsumption over propositional
clauses (disjunctions of literals) is traditionally used for similar pruning pur-
poses (e.g., [19]), but the generalization to first-order formulas, which include
disjunction, conjunction, and quantification, is novel.

The second key ingredient of our approach is a way to manipulate abstract
elements in our representation. Rather than implementing the standard opera-
tions of α (abstraction) and � (abstract join), we observe that our subsumption-
based representation makes it more natural to directly implement an operation
that computes the join of an abstract element a with the abstraction of a given
concrete state s, i.e., a � α({s}). This operation can be used to compute the
abstraction of a set of states, and can also be used to compute the least fixpoint
of the best abstract transformer (in the style of symbolic abstraction [27]). The

88 E. Frenkel et al.

crux of computing a � α({s}) is to weaken the formulas in the representation of
a to formulas that are subsumed by them and that s satisfies.

Finally, the third key ingredient of our approach is a data structure for storing
a set of formulas, with efficient filters for (i) formulas that a given state does not
satisfy, and (ii) formulas that subsume a given formula. This data structure is
then used to store abstract elements, and the filters make the implementation
of a � α({s}) more efficient.

While the paper presents the ingredients of our approach (subsumption,
weakening, and the data structure) sequentially, they are interconnected; they all
affect each other in subtle ways, and must be designed and understood together.
Specifically, there is an intricate tradeoff between the precision of subsump-
tion, which determines the extent of pruning (and therefore the compactness
of the representation), and the complexity of abstract domain operations such
as weakening (e.g., for computing a � α({s})). The definitions, algorithms, and
data structures we present are carefully crafted to balance these considerations.
Our subsumption relation, which approximates entailment, is cheap to compute,
eliminates enough redundancy to keep the representation of abstract elements
compact, and enables an efficient implementation of the weakening operation.

To evaluate our implementation of the abstract domain, we use it to imple-
ment a symbolic abstraction [27] procedure that computes the least fixpoint of
the best abstract transformer of a transition system (i.e., the strongest inductive
invariant for the transition system in the given language). Our evaluation uses
benchmarks from the literature, mostly from safety verification of distributed
protocols. While our fixpoint computation algorithm is not fully competitive with
property-directed invariant inference approaches that exploit various sophisti-
cated heuristics and optimizations, it does demonstrate that fixpoint computa-
tion in our abstract domain is feasible, which is quite surprising given the amount
of quantified formulas the domain considers. Our approach successfully computes
the least fixpoint for transition systems that previously could only be analyzed
using property-directed, heuristic techniques (which do not compute the least
fixpoint, but an unpredictable heuristic fixpoint). For example, we succeed at
finding the strongest inductive invariant of Paxos as modeled in [24] (which in
our representation has 1,438 formulas with ∀∗∃∗∀∗ quantification, representing
orders of magnitude more subsumed formulas).

In summary, this paper makes the following contributions:

1. We develop a compact representation of sets of formulas based on a novel
syntactic subsumption relation. We make a tradeoff here between the extent
of pruning and efficiency, accepting some redundant formulas in exchange for
practical algorithms. (Sect. 3)

2. We show how to implement a key operation of weakening a formula to be
satisfied by a given state, and leverage it to compute the join of an abstract
element and the abstraction of a state, when abstract elements are represented
using our subsumption-based representation. (Sect. 4)

3. We present a data structure that provides an efficient implementation of
operations used in the join computation described above. (Sect. 5)

Efficient Implementation of an Abstract Domain 89

4. We evaluate the approach by applying it to compute the least fixpoint of the
best abstract transformer for several distributed and concurrent protocols
from the literature, demonstrating the promise of our approach. (Sect. 6)

The rest of this paper is organized as follows: Sect. 2 introduces definitions
and notation, Sects. 3 to 6 present the main contributions outlined above, Sect.
7 discusses related work, and Sect. 8 concludes. The proofs of all theorems stated
in the paper are given in [8].

2 Background

First-Order Logic. For simplicity of the presentation, we present our approach
for single-sorted first-order logic, although in practice we consider many-sorted
logic. The generalization of our methods to many-sorted logic is straightforward.

Given a first-order signature Σ that consists of constant, function and relation
symbols, the sets of terms and formulas are defined in the usual way: a term t
is either a variable x, a constant c or a function application f(t1, . . . , tn) on
simpler terms; a formula is either an equality between terms t1 = t2, a relation
application r(t1, . . . , tn) on terms, or the result of applying Boolean connectives
or quantification. We also include ⊥ as a formula (that is never satisfied).

Terms and formulas are interpreted over first-order structures and assign-
ments to the (free) variables. Given a first-order signature Σ, a structure
σ = (U , I) consists of a universe U and an interpretation I to the symbols
in Σ. We denote by structs[Σ] the set of structures of Σ whose universe is a
finite set.1 When considering formulas with free variables V , and given some
structure σ = (U , I), an assignment μ : V → U maps each variable to an ele-
ment of the structure’s universe. We write (σ, μ) |= ϕ to mean that a structure
σ with an assignment μ satisfies a formula ϕ, and ψ |= ϕ to mean that a formula
ψ semantically entails ϕ, i.e., (σ, μ) |= ψ whenever (σ, μ) |= ϕ.

Abstract Interpretation. Abstract interpretation [4,5] is a framework for approx-
imating the semantics of systems. It assumes a concrete domain and an abstract
domain, each given by a partially ordered set, (C,�C) and (A,�A), respectively.
These are related via a Galois connection consisting of a monotone abstraction
function α : C → A and a monotone concretization function γ : A → C satisfying
α(c) �A a ⇐⇒ c �C γ(a) for all a ∈ A and c ∈ C.

In this work we consider logical abstract domains parameterized by a finite
first-order language L of closed formulas over signature Σ. In this context,
concrete elements are sets of states from S = structs[Σ],2 i.e., C = P(S),
ordered by �C=⊆ (set inclusion). Abstract elements are sets of formulas from
L, i.e., A = P(L), ordered by �A=⊇, and the Galois connection is given by
α(S) = {ϕ ∈ L | ∀s ∈ S. s |= ϕ} and γ(F) = {s ∈ S | ∀ϕ ∈ F. s |= ϕ}. That
is, abstraction in this domain consists of all L-formulas that hold on a given

1 We restrict our attention to FOL fragments that have a finite-model property.
2 Later we consider non-closed formulas and let S denote structures with assignments.

90 E. Frenkel et al.

concrete set, and concretization consists of all states that satisfy a given set of
formulas. Note that sets of formulas are interpreted conjunctively in this context.

This logical abstract domain forms a join-semilattice (meaning every two
elements have a least upper bound) with a least element. The least element,
denoted ⊥A (not to be confused with the formula ⊥), is L, and join, denoted �,
corresponds to set intersection. For example, F � α({s}) = F ∩ {ϕ ∈ L | s |=
ϕ} = {ϕ ∈ F | s |= ϕ}, and can be understood as weakening F by eliminating
from it all formulas that are not satisfied by s.

3 Subsumption-Based Representation of Sets of Formulas

In this section we develop an efficient representation for elements in the abstract
domain A = P(L) induced by a finite first-order language L. The abstract
elements are sets of formulas, interpreted conjunctively, which may be extremely
large (albeit finite). Our idea is to reduce the size and complexity of such sets
by avoiding redundancies that result from semantic equivalence and entailment.
For example, when representing a set of formulas we would like to avoid storing
both ϕ and ψ when they are semantically equivalent (ϕ ≡ ψ). Similarly, if ϕ |= ψ
then instead of keeping both ϕ and ψ we would like to keep only ϕ.

In practice, it is not possible to remove all such redundancies based on seman-
tic equivalence and entailment, since, as we shall see in Sect. 4, performing oper-
ations over the reduced representation of abstract elements involves recovering
certain subsumed formulas, and finding these in the case of entailment essen-
tially requires checking all formulas in the language. This is clearly infeasible for
complex languages such as the ones used in our benchmarks (see Table 1), and
is exacerbated by the fact that merely checking entailment is expensive for for-
mulas with quantifiers. Instead, our key idea is to remove redundancies based on
a cheap-to-compute subsumption relation, which approximates semantic entail-
ment, and enables efficient operations over abstract elements such as joining
them with an abstraction of a concrete state.

We start the section with an inductive definition of a family of finite first-
order languages that underlies all of our developments (Sect. 3.1). We then intro-
duce a syntactic subsumption relation for first-order formulas (Sect. 3.2), which
we leverage to develop an efficient canonicalization of formulas, effectively deter-
mining a single representative formula for each subsumption-equivalence class
(Sect. 3.3). We then use antichains of canonical formulas, i.e., sets of canonical
formulas where no formula is subsumed by another, to represent sets of formulas
(Sect. 3.4). Sects. 4 and 5 develop ways to effectively manipulate this representa-
tion in order to accommodate important operations for abstract interpretation
algorithms, such as weakening an abstraction to include a given concrete state.

3.1 Bounded First-Order Languages

At core of our approach is an inductively-defined family of first-order languages,
termed bounded first-order languages. These languages are all finite and bound

Efficient Implementation of an Abstract Domain 91

various syntactic measures of formulas (e.g., number of quantifiers, size of the
Boolean structure), which, in turn, determine the precision of the abstract
domain. The inductive definition of bounded languages facilitates efficient recur-
sive implementations of our developments.

We fix a signature Σ and a variable set V . Definition 1 provides the inductive
definition of the family of bounded first-order languages (over Σ and V), where
each language L is also equipped with a bottom element ⊥L (equivalent to false).
We use SX to denote the set of permutations over a set of variables X, and use
ϕπ to denote the formula obtained by substituting free variables in a formula
ϕ according to π ∈ SX . A set of formulas F is SX -closed if ϕπ ∈ F for every
ϕ ∈ F , π ∈ SX . All bounded first-order languages will be SV -closed; this will be
important for canonicalization. We use ϕ̄ = 〈ϕ1, . . . , ϕn〉 to denote a sequence of
formulas, ϕ−i to denote the formula ϕn−i+1 in the sequence, |ϕ̄| for the length
of ϕ̄, and [ϕ̄] for its set of indices {1, . . . , |ϕ̄|}. We use L∗ for the set of all (finite)
sequences of formulas from L, and ε for the empty sequence (|ε| = 0).

Definition 1 (Bounded First-Order Languages). A bounded first-order
language is one of the following, where X ⊆ V denotes a finite set of variables,
and L, L1 and L2 denote bounded first-order languages:

LA = A ∪ {⊥} with ⊥LA = ⊥, where A is any finite SV -closed set of formulas
∨[L1, L2] = {ϕ1 ∨ ϕ2 | ϕ1 ∈ L1, ϕ2 ∈ L2} with ⊥∨[L1,L2] = ⊥L1 ∨ ⊥L2

∧[L1, L2] = {ϕ1 ∧ ϕ2 | ϕ1 ∈ L1, ϕ2 ∈ L2} with ⊥∧[L1,L2] = ⊥L1 ∧ ⊥L2

∨k[L] = {
∨

ϕ̄ | ϕ̄ ∈ L∗ and |ϕ̄| ≤ k} with ⊥∨k[L] =
∨

ε, where k ∈ N

∧ω[L] = {
∧

ϕ̄ | ε
= ϕ̄ ∈ L∗} with ⊥∧ω [L] =
∧

〈⊥L〉
∃X [L] = {∃X.ϕ | ϕ ∈ L} with ⊥∃X [L] = ∃X.⊥L
∀X [L] = {∀X.ϕ | ϕ ∈ L} with ⊥∀X [L] = ∀X.⊥L
∃∀X [L] = {QX.ϕ | ϕ ∈ L, Q ∈ {∃, ∀}} with ⊥∃∀X [L] = ∀X.⊥L

The base case is any finite set of formulas (over Σ and V) that is closed
under variable permutations, augmented by ⊥ (denoting false). Typical exam-
ples include the set of all literals over Σ and V with a bounded depth of func-
tion applications. We introduce binary language constructors for disjunction
and conjunction, each operating on two possibly different languages. We also
introduce constructors for homogeneous disjunction of at most k disjuncts, as
well as unbounded non-empty conjunction, over any single language. Finally, we
introduce constructors for quantification (∃ or ∀) over a finite set of variables
and a language, as well as a constructor that includes both quantifiers for lan-
guages where both options are desired. Note that for the construction of a logical
abstract domain, we are interested in languages where all formulas are closed
(have no free variables), but the inductive definition includes languages with free
variables.

The semantics of formulas in each language is defined w.r.t. states S that
consist of first-order structures and assignments to the free variables, following
the standard first-order semantics, extended to conjunctions and disjunctions of

92 E. Frenkel et al.

finite sequences in the natural way, where
∨

ε ≡ ⊥. (We do not allow
∧

ε, which
would have been equivalent to “true”, since it is not useful for our developments.)

Observe that for a fixed language L, the formulas ϕ1 ∨ ϕ2 ∈ ∨[L,L] and∨
〈ϕ1, ϕ2〉 ∈ ∨2[L] are syntactically different but semantically equivalent (and

similarly for conjunctions). Nonetheless, we introduce homogeneous disjunction
and conjunction since they admit a more precise subsumption relation, yielding
a more efficient representation of sets of formulas. Also note that we consider
bounded disjunction but unbounded conjunction; Sect. 4.3 explains this choice.

Example 1. L = ∀{x,y}[∨2[LA]] with A = {p(x),¬p(x), p(y),¬p(y)} is a
bounded first-order language over signature Σ that has one unary predicate p and
variables V = {x, y}. Formulas in this language are universally quantified homo-
geneous disjunctions of at most two literals. For instance, L includes ∀{x, y}.

∨
ε,

which is also ⊥L, as well as ∀{x, y}.
∨

〈p(x)〉, ∀{x, y}.
∨

〈p(x),¬p(y)〉, etc.

3.2 Syntactic Subsumption

Next, we define a subsumption relation for each bounded first-order language.
The subsumption relation serves as an easy-to-compute under-approximation for
entailment between formulas from the same language. We use �L to denote the
subsumption relation for language L, or simply � when L is clear from context.
When ϕ � ψ we say ϕ subsumes ψ, and then we will also have ϕ |= ψ.

Definition 2 (Subsumption). We define �L inductively, following the def-
inition of bounded first-order languages, as follows, where ◦ ∈ {∨,∧}, k ∈ N,
Q,Q′ ∈ {∃,∀}, X is a finite set of variables, and L, L1 and L2 are bounded
first-order languages:

ϕ LA ψ iff ϕ = ⊥ or ϕ = ψ

ϕ1 ◦ ϕ2 ◦[L1,L2] ψ1 ◦ ψ2 iff ϕ1 L1 ψ1 and ϕ2 L2 ψ2 (pointwise extension)
∨

ϕ̄ ∨k[L]

∨
ψ̄ iff ∃m : [ϕ̄] → [ψ̄]. ∀i ∈ [ϕ̄]. ϕi ψm(i) and m is injective

∧
ϕ̄ ∧ω [L]

∧
ψ̄ iff ∃m : [ψ̄] → [ϕ̄]. ∀i ∈ [ψ̄]. ϕm(i) ψi

(QX.ϕ) QX [L] (QX.ψ) iff ∃π ∈ SX . ϕ L ψπ

(QX.ϕ) ∃∀X [L] (Q
′X.ψ) iff ∃π ∈ SX . ϕ L ψπ, and Q = ∀ or Q′ = ∃

The subsumption relation of a bounded first-order language L is composed,
hierarchically, from the subsumption relations of the bounded first-order lan-
guages that L is composed from. For example, the languages participating in
the composition of L = ∀{x,y}[∨2[LA]] defined in Example 1 are LA, ∨2[LA],
and ∀{x,y}[∨2[LA]], and each is equipped with its own subsumption relation.

In the base case, formulas in LA are only subsumed by themselves or by
⊥. For example, considering Example 1, p(x) ��LA

p(y). Subsumption is lifted
to languages obtained by binary conjunctions and disjunctions in a pointwise
manner. For the languages obtained by homogeneous constructors, a mapping
over indices determines which element of one sequence subsumes which element
of the other. To approximate entailment, the mapping in the disjunctive case

Efficient Implementation of an Abstract Domain 93

maps each element of
∨

ϕ̄ to one in
∨

ψ̄ that it subsumes, and in the conjunc-
tive case maps each element of

∧
ψ̄ to one in

∧
ϕ̄ that subsumes it. As a result,

subsumption is more precise in the homogeneous case than in the binary one.
For example, considering A from Example 1, p(x) ∨ p(y) ��∨[LA,LA] p(y) ∨ p(x),
even though the formulas are semantically equivalent. On the other hand,∨

〈p(x), p(y)〉 �∨2[LA]

∨
〈p(y), p(x)〉

In the case of quantifiers, subsumption is lifted from the language of the body
while considering permutations over the quantified variables. For example, in
Example 1, ∀{x, y}.

∨
〈p(x)〉 �L ∀{x, y}.

∨
〈p(y)〉 due to variable permutations,

even though
∨

〈p(x)〉 ��∨2[LA]

∨
〈p(y)〉. When both quantifiers are considered, a

universal quantifier can subsume an existential one.
The injectivity requirement for �∨k[L] can be dropped without damaging any

of the definitions or theorems in this section, but it enables a simpler definition
of the weakening operator in Sect. 4 (as discussed further in Sect. 4.3).

The following theorem establishes the properties of �L.

Theorem 1 (Properties of �L). For any bounded first-order language L, �L
is a preorder (i.e., reflexive and transitive) such that for any ϕ,ψ ∈ L, if ϕ � ψ
then ϕ |= ψ. Moreover, ⊥L �L ϕ for any ϕ ∈ L.

As with entailment, where two distinct formulas can entail each other (i.e.,
be semantically equivalent), there can be distinct formulas ϕ,ψ ∈ L with ϕ �L ψ
and ψ �L ϕ (since �L is not always a partial order, i.e., not antisymmetric).
We call such formulas subsumption-equivalent, and denote this by ϕ ≡�L ψ.
(≡�L is clearly an equivalence relation.) The existence of subsumption-equivalent
formulas is a positive sign, indicating that our subsumption relation manages
to capture nontrivial semantic equivalences. This is thanks to the definition
of subsumption for homogeneous disjunction and conjunction, as well as for
quantification. For example,

∨
〈ϕ,ψ〉 ≡�

∨
〈ψ,ϕ〉 (and similarly for conjunction),

and if ϕ � ψ then
∧

〈ϕ,ψ〉 ≡�
∧

〈ϕ〉. For quantifiers, QX.ϕ ≡� QX.ϕπ for any
π ∈ SX and Q ∈ {∃,∀}. (In contrast, �LA

is always antisymmetric, and the
definitions of ∨[L1,L2] and ∧[L1,L2] preserve antisymmetry.)

3.3 Canonicalization

As a first step towards an efficient representation of sets of formulas, we use a
canonicalization of formulas w.r.t. ≡�, which allows us to only store canonical
formulas as unique representatives of their (subsumption-) equivalence class. In
general, a canonicalization w.r.t. an equivalence relation ≡ over a set S is a
function c : S → S such that ∀x ∈ S. c(x) ≡ x (representativeness) and ∀x, y ∈
S. x ≡ y ⇐⇒ c(x) = c(y) (decisiveness). We say that x is canonical if c(x) = x.
When the equivalence relation is derived from a preorder (as ≡� is derived from
�) then the preorder is a partial order over the set of canonical elements. For our
case, that means that �L is a partial order over the set of canonical L-formulas.

It is useful, both for the algorithms developed in the sequel and for the def-
inition of canonicalization for QX [L] (Q ∈ {∃,∀,∃∀}), to define a total order

94 E. Frenkel et al.

≤L over canonical L-formulas that extends �L. We thus define the canonical-
ization function cL and the total order ≤L over canonical L-formulas by mutual
induction. For a set of canonical L-formulas F , we use min�L F to denote the
set of formulas in F not subsumed by others, i.e., min�L F = {ϕ ∈ F | ∀ψ ∈
F \{ϕ}. ψ �� ϕ}, and use min≤L F to denote the minimal element of a non-empty
set F w.r.t. the total order ≤L. Finally, we use 〈ϕ̄〉≤ for the sequence obtained by
sorting ϕ̄ according to ≤ in ascending order, and similarly 〈F 〉≤ for the sequence
obtained by sorting the elements of a set F .

Definition 3 (Canonicalization). For every bounded first-order language L,
we define the canonicalization function cL : L → L and a total order ≤L over
canonical L-formulas by mutual induction (where ◦ ∈ {∨,∧} and Q ∈ {∃,∀}):

cLA(ϕ) = ϕ

c◦[L1,L2](ϕ1 ◦ ϕ2) = cL1(ϕ1) ◦ cL2(ϕ2) (pointwise)

c∨k[L](
∨

ϕ̄) =
∨

〈cL(ϕ1), . . . , cL(ϕ|ϕ̄|)〉≤L

c∧ω [L](
∧

ϕ̄) =
∧

〈min�L{cL(ϕ1), . . . , cL(ϕ|ϕ̄|)}〉≤L

cQX [L](QX.ϕ) = QX.min≤L
{
cL(ϕπ)

∣∣ π ∈ SX

}

c∃∀X [L](QX.ϕ) = cQX [L](QX.ϕ)

and

≤LA is an arbitrary total order extending LA

ϕ1 ◦ ϕ2 ≤◦[L1,L2] ψ1 ◦ ψ2 ⇐⇒ ϕ1 <L1 ψ1, or ϕ1 = ψ1 and ϕ2 ≤L2 ψ2
∨

ϕ̄ ≤∨k[L]

∨
ψ̄ ⇐⇒ ϕ̄ is a suffix of ψ̄,

or ∃i ∈ [ϕ̄] ∩ [ψ̄]. ϕ−i <L ψ−i ∧ ∀j < i. ϕ−j = ψ−j
∧

ϕ̄ ≤∧ω [L]

∧
ψ̄ ⇐⇒ ψ̄ is a prefix of ϕ̄,

or ∃i ∈ [ϕ̄] ∩ [ψ̄]. ϕi <L ψi ∧ ∀j < i. ϕj = ψj

QX.ϕ ≤QX [L] QX.ψ ⇐⇒ ϕ ≤L ψ

QX.ϕ ≤∃∀X [L] Q′X.ψ ⇐⇒ Q = Q′ and ϕ ≤L ψ, or Q = ∀ and Q′ = ∃

where ϕ <L ψ is shorthand for “ϕ ≤L ψ and ϕ �= ψ”.

Our inductive definition of canonicalization in Definition 3 recognizes the only
possible sources of nontrivial subsumption-equivalence in our construction: non-
canonicity of subformulas, ordering of sequences, internal subsumption in ∧ω[·]-
sequences, and permuting of quantified variables. To address these, we canonical-
ize all subformulas, order their sequences w.r.t ≤L in ∨k[L] and ∧ω[L], minimize
∧ω[L]-sequences w.r.t �L, and in QX [L], Q ∈ {∃,∀,∃∀}, choose the permuta-
tion yielding the ≤L-least (canonical) body. For the total order in the cases of
Boolean connectives, we use lexicographic-like orderings carefully designed to
extend their associated subsumption relations (e.g., homogeneous disjunction
uses a right-to-left lexicographic ordering). For quantification, the total order is
directly lifted from the total order for canonical bodies.

Efficient Implementation of an Abstract Domain 95

As an example, consider L = ∀{x,y}[∨2[LA]] from Example 1. To obtain a
canonicalization for L, we provide an arbitrary total order ≤LA

, say p(x) <LA

¬p(x) <LA
p(y) <LA

¬p(y) (recall that ⊥ ∈ LA is least). This uniquely deter-
mines the total order and canonicalization of L and all of its sub-languages. For
example, canonicalization of both ∀{x, y}.

∨
〈p(x)〉 and ∀{x, y}.

∨
〈p(y)〉, which

are �L-equivalent, is ∀{x, y}.
∨

〈p(x)〉. This is because p(x) <LA
p(y), and

thus c∨2[LA] (
∨

〈p(x)〉) =
∨

〈p(x)〉 <∨2[LA]

∨
〈p(y)〉 = c∨2[LA] (

∨
〈p(y)〉). Note

that
∨

〈p(x)〉 and
∨

〈p(y)〉 are both canonical, but adding quantifiers merges
the two formulas into the same subsumption-equivalence class, necessarily mak-
ing the quantified version of one of them non-canonical. Similarly, the �∨2[LA]-
equivalent formulas

∨
〈p(x), p(y)〉 and

∨
〈p(y), p(x)〉 are both canonicalized into∨

〈p(x), p(y)〉 (by sorting the sequences of literals according to ≤LA
).

The properties of cL and ≤L defined above are established by the following
theorem, which ensures that Definition 3 is well-defined (e.g., that whenever
min≤L is used, ≤L is a total order).

Theorem 2. For any bounded language L, cL is a canonicalization w.r.t. ≡�L ,
that is, it is representative (cL(ϕ) ≡�L ϕ) and decisive (ϕ ≡�L ψ ⇐⇒ cL(ϕ) =
cL(ψ)); �L is a partial order over canonical L-formulas; and ≤L is a total order
over canonical L-formulas that extends �L.

Corollary 1. For any ϕ,ψ ∈ L, if ϕ �L ψ then cL(ϕ) ≤L cL(ψ).

Henceforth, we use L to denote the set of canonical L-formulas.

3.4 Representing Sets of Formulas

We utilize the subsumption relation and canonicalization to efficiently represent
sets of formulas which are interpreted conjunctively as antichains of canonical
formulas, where an antichain is a set of formulas incomparable by subsumption.

Definition 4 (Set Representation). Given a set of formulas F ⊆ L, we
define its representation as the set RF = min�L{c(ϕ) | ϕ ∈ F}.

The representation combines two forms of redundancy elimination: the use
of canonical formulas eliminates redundancies due to subsumption-equivalence,
and the use of �L-minimal elements reduces the size of the set by ignoring
subsumed formulas. Observe that the more permissive the subsumption relation
is, the smaller the set representations are, because more formulas will belong to
the same equivalence class and more formulas will be dropped by min�L .

This representation preserves the semantics of a set of formulas (interpreted
conjunctively). For sets that are upward-closed w.r.t. subsumption (e.g., α(S)
for some set of states S), the representation is lossless as a set can be recovered
by taking the upward closure of its representation. For a set F ⊆ L, we use ↑F to
denote its upward closure (w.r.t. �L), given by ↑F = {ϕ ∈ L | ∃ψ ∈ F.ψ �L ϕ}.

Theorem 3 (Antichain Representation). For F ⊆ L and RF =
min�L{c(ϕ) | ϕ ∈ F} its representation,

∧
RF ≡

∧
F and ↑RF = ↑F .

96 E. Frenkel et al.

Corollary 2. If F ⊆ L is upward closed w.r.t. �L then F = ↑RF .

In particular, Corollary 2 applies to any set that is closed under entailment.

4 The Weaken Operator

This section develops an algorithm that computes a weaken operator, which takes
a representation of an upward-closed set F ⊆ L and a state s and computes a
representation of F ∩ α({s}) = {ϕ ∈ F | s |= ϕ}. When F is viewed as an
abstract element, this operation corresponds to computing F � α({s}). While
it is not a general abstract join operator, joining an abstract element with the
abstraction of a single concrete state is a powerful building block that can be
used, for example, to compute the abstraction of a set of states or even the least
fixpoint of the best abstract transformer (á la symbolic abstraction [27]).

In an explicit representation of F , computing F � α({s}) would amount
to removing from F all the formulas that are not satisfied by s. However, in
the subsumption-based representation RF , simply removing said formulas is not
enough. Instead, we must weaken them, i.e., replace them by formulas they
subsume that are satisfied by s. To this end, Sect. 4.1 develops an appropriate
weakening operator for a single formula, and Sect. 4.2 then lifts it to antichains
used as representations.

4.1 Weakening a Single Canonical Formula

Given a canonical formula ϕ and a state s such that s �|= ϕ, the weaken operator
computes the set of minimal canonical formulas that are subsumed by ϕ and
satisfied by s, which can be understood as a representation of ↑{ϕ} ∩ α({s}).

Definition 5 (The Weaken Operator). The weaken operator of L is the
function WL : L × S → P(L) defined as follows:

WL (ϕ, s) = min�L {cL(ψ) | ψ ∈ L, ϕ � ψ, and s |= ψ} .

Note that WL (ϕ, s) returns a set of formulas, since there may be different
incomparable ways to weaken ϕ such that it is satisfied by s.

While Definition 5 does not suggest a way to compute WL (ϕ, s), the fol-
lowing theorem provides a recursive implementation of WL (ϕ, s) that follows
the inductive structure of bounded languages. For the quantification cases, we
weaken according to all assignments of variables in X ⊆ V . Recall that a state
can be unpacked as s = ((U , I), μ) where (U , I) is a first-order structure (universe
and interpretation) and μ is an assignment to variables (into U). For assignments
μ and ν, we use μ

←−∪ ν to denote the assignment obtained from μ by updating
(possibly extending) it according to ν.

Theorem 4 (Implementation of Weaken). Let ϕ ∈ L be a canonical for-
mula in a bounded first-order language L and s ∈ S a state. If s |= ϕ then
WL (ϕ, s) = {ϕ}. If s �|= ϕ, then WL (ϕ, s) is given by:

Efficient Implementation of an Abstract Domain 97

WLA
(ϕ, s) =

{
{ψ ∈ A | s |= ψ}, if ϕ = ⊥
∅, if ϕ
= ⊥

W∨[L1,L2] (ϕ1 ∨ ϕ2, s) = {ψ ∨ ϕ2 | ψ ∈ WL1 (ϕ1, s)} ∪ {ϕ1 ∨ ψ | ψ ∈ WL2 (ϕ2, s)}
W∧[L1,L2] (ϕ1 ∧ ϕ2, s) = {ψ1 ∧ ψ2 | ψ1 ∈ WL1 (ϕ1, s), ψ2 ∈ WL2 (ϕ2, s)}

W∨k[L]

(∨
ϕ̄, s

)
= min �∨k[L]

(
W|ϕ̄| ∪ W|ϕ̄|+1

)
where

W|ϕ̄| =
{∨

〈ϕ1, . . . , ϕi−1, ψ, ϕi+1, . . . , ϕ|ϕ̄|〉≤L
| i ∈ [ϕ̄], ψ ∈ WL (ϕi, s)

}
and

W|ϕ̄|+1 =
{∨

〈ϕ1, . . . , ϕ|ϕ̄|, ψ〉≤L
| ψ ∈ WL (⊥L, s) and |ϕ̄| < k

}
W∧ω [L]

(∧
ϕ̄, s

)
=

{∧
〈min �L WL (ϕ1, s) ∪ · · · ∪ WL

(
ϕ|ϕ̄|, s

)〉≤L

}
W∃X [L] (∃X.ϕ, ((U, I), μ)) = min �∃X [L]

{c(∃X.ψ) | ν : X → U, ψ ∈ WL
(

ϕ, ((U, I), μ
←−∪ ν)

)
}

W∀X [L] (∀X.ϕ, ((U, I), μ)) = min �∀X [L]
{c(∀X.ψ) | ψ ∈ Ωϕ

(
{((U, I), μ

←−∪ ν) | ν : X → U}
)

}
where Ωϕ0 ({s1, . . . , sn}) = {ϕn | ϕ1 ∈ WL (ϕ0, s1), . . . , ϕn ∈ WL (ϕn−1, sn)}
W∃∀X [L] (∃X.ϕ, s) = W∃X [L] (∃X.ϕ, s)

W∃∀X [L] (∀X.ϕ, s) = min �∃∀X [L]

(
W∃X [L] (∃X.ϕ, s) ∪ W∀X [L] (∀X.ϕ, s)

)

When s |= ϕ, no weakening of ϕ is needed for s to satisfy it. In the case of
LA, only ⊥ can be weakened to make s satisfy it, yielding the set of formulas
from A that are satisfied by s. (For LA, weakening anything except ⊥ that is not
satisfied by s yields the empty set.) In the case of disjunction, it suffices for one of
the disjuncts to be satisfied by s. Therefore, weakening is done by (i) weakening
exactly one of the existing disjuncts, which applies to both ∨[L1,L2] and ∨k[L];
or by (ii) adding a disjunct that weakens ⊥L, which applies only to

∨
ϕ̄ ∈ ∨k[L]

when |ϕ̄| < k. In the case of homogeneous disjunction, each resulting disjunc-
tion needs to be sorted to restore canonicity; moreover, some of the resulting
disjunctions may be subsumed by others, so min�∨k[L] is applied to the set
of weakened disjunctions. In the case of conjunction, all conjuncts need to be
weakened to be satisfied by s. In the binary case, this leads to all pairs that
combine weakened conjuncts. But in the homogeneous case a single conjunction
can accumulate all weakened conjuncts, so weakening always yields a singleton
set; filtering the weakened conjuncts using min�L is required to ensure canonic-
ity, as one weakened conjunct may subsume another. To satisfy an existentially
quantified formula, it suffices for the body to be satisfied by a single assignment.
Therefore, each possible assignment ν contributes to the result of weakening.
In contrast, for a universally quantified formula the body must be satisfied by
all assignments. Therefore, the body of the formula is iteratively weakened by
all assignments. In both cases, formulas are re-canonicalized and non-minimal
elements are removed. The case of ∃∀X [L] combines the two quantified cases.

Example 2. Consider applying the weaken operator of L = ∀{x,y}[∨2[LA]]
from Example 1 to the bottom element ⊥L = ∀{x, y}.

∨
ε, with the state

s = ((U , I), μ) where U = {a, b}, pI = {a, b}, and μ is an empty assignment. To
weaken the universally quantified formula, we first iteratively weaken its body,

98 E. Frenkel et al.

ϕ0 =
∨

ε, with the states s1, . . . , s4, each of which extends s with one of the
4 possible assignments to x, y. Since all of these states satisfy p(x) and p(y),
the first weakening (with s1) results in {

∨
〈p(x)〉,

∨
〈p(y)〉}, and no formula is

weakened further in later iterations (since both of them are already satisfied by
s2, s3, s4). As we have seen in Sect. 3.3, both formulas are canonical; however,
they become subsumption-equivalent when the quantifier prefix is added, demon-
strating the need for additional canonicalization in the computation of weaken
for ∀X [·]. The result is the antichain of canonical formulas {∀{x, y}.

∨
〈p(x)〉}.

Note that the weakened formula ⊥L has 21 formulas in its �L-upward closure,
and its weakening has 14 formulas (see [8] for the lists of formulas); yet through-
out the weakening process we only dealt with at most two formulas.

Algorithm 1: In-place Weaken for LSet[L]
Input: An antichain of canonical L-formulas R stored in the LSet[L] data

structure and a state s ∈ S

Output: R modified in place to store WL (R, s)

1 U := R| �=|s;
2 for ϕ ∈ U do R.remove(ϕ);
3 W :=

⋃
ϕ∈U WL (ϕ, s);

4 for ϕ ∈ W sorted by ≤L do
5 if R|�ϕ = ∅ then R.insert(ϕ);

4.2 Weakening Sets of Formulas

We lift the weaken operator to sets of canonical formulas. For a set R ⊆ L, we
define WL (R, s) = min�

⋃
ϕ∈R WL (ϕ, s), motivated by the following theorem.

Theorem 5 (From Weaken to Join). Let F ⊆ L be upward-closed w.r.t.
�, RF its representation (RF = min�{c(ϕ) | ϕ ∈ F}), and s a state. The
representation of F � α({s}) is given by WL (RF , s) = min�

⋃
ϕ∈RF

WL (ϕ, s).

Corollary 3 (Weaken for a Set of States). Let F ⊆ L be upward-closed
w.r.t. �, RF its representation, and s1, . . . , sn states. The representation of F �
α({s1, . . . , sn}) is given by WL (WL (· · · WL (WL (RF , s1), s2), · · · sn−1), sn).

Corollary 4 (Abstraction of a Set of States). The representation of α(S)
for a set of states S The representation of α({s1, . . . , sn}) is given by
WL (WL (· · · WL (WL ({⊥L}, s1), s2), · · · sn−1), sn).

Theorem 5 and Corollary 3 show that weakening of a single formula can be
lifted to compute join between an upward-closed set of formulas (represented
using its minimal elements w.r.t. �) and the abstraction of one or more states.

Next, we observe that we can implement WL (R, s) by (i) focusing only on
formulas that actually need weakening, i.e., formulas in R that are not satisfied

Efficient Implementation of an Abstract Domain 99

by s, without iterating over formulas that s satisfies; and (ii) leveraging the ≤L
total order to accumulate the set of minimal elements more efficiently.

Algorithm1 presents our implementation of WL (R, s) for an antichain R of
canonical formulas and a state s. It updates R to WL (R, s) in place, which
is useful for computing an abstraction of a set of states (Corollary 3) or even
for fixpoint computation (Sect. 6). The algorithm uses a data structure LSet[L]
(whose implementation is explained in Sect. 5) that stores a set of canonical L-
formulas and supports two efficient filters: one for formulas that are not satisfied
by a given state s, denoted by R|
=|s; and one for formulas that subsume a
given formula ϕ, denoted by R|�ϕ. Formally: R|
=|s = {ψ ∈ R | s �|= ψ} and
R|�ϕ = {ψ ∈ R | ϕ � ψ}.

To weaken R, Algorithm1 first identifies all formulas that need weakening
using the R|
=|s filter. It then removes these formulas, weakens them, and adds
the weakened formulas back to the set, while filtering out formulas that are
not �L-minimal. For the minimality filtering, we leverage ≤L to ensure that
if ϕ �L ψ then ϕ is added before ψ. As a result, when inserting a formula ϕ
we only need to check that it is not already subsumed by another formula in
the set, which is done by checking if R|�ϕ is empty3. Importantly, a formula
ϕ ∈ R \ R|
=|s cannot be subsumed by a formula from WL (ψ, s) for ψ ∈ R|
=|s.
(If we assume the contrary we easily get that ψ � ϕ, contradicting the fact that
R is an antichain.)

4.3 Design Consideration and Tradeoffs

We are now in a position to discuss the tradeoffs and considerations that arise
in our framework in the design of languages and their subsumption relations,
explaining the design choices behind Definitions 1 and 2.

There is a tradeoff between the precision of the subsumption relation �L and
the complexity of implementing the weaken operator WL. From a representation
perspective, a more precise �L is desirable (i.e., relating more formulas), since
it means that the upward closure ↑{ϕ} of a formula ϕ is larger, and (upward-
closed) sets of formulas can be represented using less minimal formulas. On
the other hand, when ↑{ϕ} is larger, computing WL (ϕ, s) is generally more
complicated. As an extreme case, if �L is trivial (i.e., a formula only subsumes
itself), we get no pruning in the representation, but computing WL (ϕ, s) is
very easy, since it is either {ϕ} or ∅. As another example, compare ∨[L,L]
with ∨2[L]. The subsumption relation of ∨[L,L] is a pointwise extension, while
that of ∨2[L] allows swapping the two formulas, which is more precise. (E.g.,∨

〈ϕ,ψ〉 �∨2[L]

∨
〈ψ,ϕ〉 always holds but we might have ϕ ∨ ψ ��∨[L,L] ψ ∨ ϕ.)

Accordingly, weakening of ∨2[L]-formulas is slightly more involved.
As opposed to reordering of disjuncts, �∨k[L] does not allow multiple dis-

juncts to subsume the same one, e.g.,
∨

〈ϕ,ψ〉 ��∨k[L]

∨
〈ψ〉 even if ϕ �L ψ (recall

that the mapping between disjuncts must be injective). This choice makes the

3 While the implementation of the weaken operator only checks the emptiness of R|�ϕ,
the full set is used in the recursive implementation of R|�ϕ (Sect. 5).

100 E. Frenkel et al.

computation of W∨k[L] simpler, as it only needs to consider individually weak-
ening each disjunct or adding a new one, but not merging of disjuncts (to “make
space” for a new disjunct). For example, when computing W∨2[L] (

∨
〈ϕ1, ϕ2〉, s),

we do not have to consider formulas of the form
∨

〈ϕ,ψ〉 where s |= ψ and
ϕ1, ϕ2 �L ϕ, which we would need to include if the mapping was not required to
be injective. One seemingly undesirable consequence of the injectivity require-
ment is that canonical formulas may contain redundant disjuncts, e.g.,

∨
〈ϕ,ψ〉

when ϕ � ψ (or even
∨

〈ϕ,ϕ〉). However, when formulas are obtained by itera-
tive weakening, as in the computation of the representation of α(S) for a set of
concrete states S, formulas with such redundancies will be eliminated as they
are always subsumed by a canonical formula without redundancies.

Our design of bounded first-order languages uses bounded disjunction but
unbounded conjunction. The reason is that we obtain formulas by weakening
other formulas, starting from ⊥L. In this scenario, bounding the size of con-
junctions would have replaced one conjunction by all of its subsets smaller than
the bound, causing an exponential blowup in the number of formulas, without
contributing much to generalization. On the other hand, bounding the size of
disjunctions yields generalization without blowing up the number of formulas (in
fact, it reduces the number of formulas compared to unbounded disjunction).

5 Data Structure for Sets of Formulas

The implementation of WL (R, s) presented in Algorithm 1 uses the filters R|
=|s
and R|�ϕ. Since the sets may be very large, a naive implementation that iter-
ates over R to find formulas that are not satisfied by s (R|
=|s) or formulas that
subsume ϕ (R|�ϕ) may become inefficient. We therefore introduce a data struc-
ture for bounded first-order languages, which we call LSet[L], that stores a set
of canonical L-formulas R (not necessarily an antichain), and implements R|
=|s
and R|�ϕ without iterating over all formulas in R. The key idea is to define
the LSet[L] data structure recursively, following the structure of L, and to use
auxiliary data to implement the R|
=|s and R|�ϕ filters more efficiently.

For example, to implement LSet[∨[L1,L2]], we store a set of ∨[L1,L2]-
formulas and two auxiliary data fields: an LSet L : LSet[L1] and a map
M : Map[L1,LSet[L2]]. We maintain the invariant that ϕ1 ∨ ϕ2 is in the set
iff ϕ2 ∈ M [ϕ1], and that L contains the same L1-formulas as the keys of M .
Then, to find formulas that are not satisfied by a state s, i.e., formulas where
both disjuncts are not satisfied by s, we first query L to find ϕ1’s that are not
satisfied by s, and for each such ϕ1 we query the LSet M [ϕ1] to find ϕ2’s that are
not satisfied by s. Implementing the subsumption filter follows a similar logic.

Our implementation of LSet[∨k[L]] uses a trie data structure that generalizes
the binary case. Each edge is labeled by an L-formula, and each node represents
an ∨k[L]-formula that is the disjunction of the edge labels along the path from
the root to the node. The outgoing edges of each node are stored using an
LSet[L] that can be used to filter only the edges whose label is not satisfied by a
given state, or subsumes a given formula. Then, the R|
=|s and R|�∨

ϕ̄ filters are
implemented by recursive traversals of the tree that only traverse filtered edges.

Efficient Implementation of an Abstract Domain 101

The recursive implementation for the other language constructors is simpler,
and follows a similar intuition to that of the cases presented above. The base
case LSet[LA] is implemented without any auxiliary data using straightforward
iteration. The full details of the LSet[L] data structure appear in [8].

6 Implementation and Evaluation

To evaluate our abstract domain implementation, we used it to implement a sym-
bolic abstraction [27,29] algorithm that computes the least fixpoint of the best
abstract transformer of a transition system. We evaluated our implementation
on 19 distributed protocols commonly used as benchmarks in safety verification
and obtained promising results.

6.1 Implementation

We implemented our abstract domain and the symbolic abstraction algorithm in
Flyvy,4 an open-source verification tool written in Rust, whose implementation
leverages parallelism and the optimizations detailed below. The implementation
and benchmarks used, as well as the log files and raw results from the experiments
reported, are publicly available in this paper’s artifact [7].

Our implementation receives as input (i) a first-order transition system (ι, τ)
over signature Σ, where ι is a closed first-order formula over Σ specifying the
initial states and τ is a closed first-order formula over two copies of Σ specifying
the transitions, and (ii) a specification of a bounded first-order language L over
Σ that defines the abstract domain P(L). The reachable states of the system
are the least fixpoint of a concrete transformer T : P(S) → P(S) given by
T (S) = {s′ ∈ S | s′ |= ι ∨ ∃s ∈ S. 〈s, s′〉 |= τ}, where 〈s, s′〉 |= τ indicates
that the pair of states satisfies the two-vocabulary formula τ , i.e., that s′ is a
successor of s w.r.t the transition relation defined by τ . For more details on this
style of modeling distributed systems in first-order logic, see [23–25].

The Galois connection (α, γ) between P(S) and P(L) induces a best abstract
transformer T � : P(L) → P(L) defined by T � = α ◦ T ◦ γ. Any fixpoint of T �,
i.e., a set F ⊆ L such that T �(F) = F , is an inductive invariant of (ι, τ) (when
sets are interpreted conjunctively), and the least fixpoint, lfpT �, is the strongest
inductive invariant in L. The strongest inductive invariant is useful for verifying
safety properties of the system, or showing that they cannot be proven in L (if
the strongest inductive invariant in L cannot prove safety, neither can any other
inductive invariant expressible in L).

Symbolic abstraction computes lfpT � without computing T � explicitly: begin-
ning with F = L (the least element in P(L)), and as long as F �= T �(F), a
counterexample to induction (CTI) of F is sampled, i.e., a state s′ �|=

∧
F that

is either an initial state or the successor of a state s with s |=
∧

F , and F is
updated to F � α({s′}). Our implementation uses the representation RF and

4 Flyvy’s code is available at https://github.com/vmware-research/temporal-verifier.

https://github.com/vmware-research/temporal-verifier

102 E. Frenkel et al.

Algorithm1 to compute the join (more details in [8]). To find CTIs or deter-
mine that none exist we use SMT solvers (Z3 [21] and cvc5 [2]), with queries
restricted to the EPR fragment (following [24]), which ensures decidability and
the existence of finite counterexamples. Solvers still struggle in some challenging
benchmarks, and we employ several optimizations detailed in [8] to avoid solver
timeouts.

6.2 Experiments

To evaluate our techniques, we computed the least fixpoints (strongest inductive
invariants) of 19 distributed protocols commonly used as benchmarks in safety
verification, in a language expressive enough to capture their human-written
safety invariants. We used all EPR benchmarks from [15], except for universally
quantified Paxos variants. To evaluate the utility of the LSet data structure
described in Sect. 5, we ran each experiment twice, once using LSet and once
using a naive (but parallelized) implementation for the filters R|
=|s and R|�ϕ.

To specify the bounded first-order language for each example, we provide
the tool with a quantifier prefix (using ∃X [·], ∀X [·], and ∃∀X [·]) composed
on top of a quantifier-free bounded language that captures k-pDNF (follow-
ing [15]). A k-pDNF formula has the structure c1 → (c2 ∨ · · · ∨ ck), where
c1, c2, . . . , ck are cubes (conjunctions of literals). We specify such formulas as
∨[∨n[LA1],∨k−1[∧ω[LA2]]], where k and n are parameters, and A1 and A2 are
sets of literals. Inspired by [30], we observe that we can restrict the variables used
in A1 and A2 to reduce the size of the language without losing precision.5 For
additional details see [8]. The list of examples with their language parameters
appears in Table 1. For each example, we report the quantifier structure, the k
and n parameters of the k-pDNF quantifier-free matrix, and the approximate
size of the language L. Recall that the size of the abstract domain is 2|L|.

All experiments were performed on a 48-threaded machine with 384 GiB of
RAM (AWS’s z1d.metal) and a three-hour time limit. For each example we
also provide runtimes of two state-of-the-art safety verification tools, DuoAI [30]
and P-FOL-IC3 [15]. Note that, unlike our technique, these tools look for some
inductive invariant proving safety, not necessarily the strongest, but are also
given fewer explicit language constraints. Moreover, the runtimes of DuoAI and
P-FOL-IC3 are sourced from their respective papers, and reflect different archi-
tectures and time limits. Thus, the inclusion of their results is not intended as a
precise comparison to our tool, but as a reference for the difficulty of the invariant
inference task of each example, as evidenced by state-of-the-art techniques.

5 One of the language reductions used by [30] relies on an overly generalized lemma [30,
Lemma 6]; we confirmed this with the authors of [30]. We prove and use a correct
(but less general) variant of this lemma, see [8] for details.

Efficient Implementation of an Abstract Domain 103

6.3 Results

The results of the symbolic abstraction computation are presented in Table 1. For
each experiment we report the runtime of our tool and the following statistics:
the percentage of time spent weakening formulas (as opposed to searching for
CTIs), the number of formulas in the representation of the fixpoint (if reached),
and the maximal number of formulas in the representation of an abstract element
throughout the run. Each experiment was run five times, unless it timed out, in
which case it was run only once. We aggregate the results of each statistic across
multiple runs as median ± deviation, where deviation is the maximal distance
between the median value and the value of the statistic in any given run.

For simple examples, the fixpoint computation terminates very quickly, often
faster than the other tools, and maintains only tens or hundreds of formulas
throughout its run. Some of the larger examples, such as ticket, paxos-epr,
flexible-paxos-epr, and cache also terminate after similar times to the other
tools. In fact, this is the first work to compute least fixpoints for any Paxos vari-
ant or cache. (DuoAI, for instance, has a component that attempts to compute
a precise fixpoint, but [30] reports that it times out on all Paxos variants.)

Unsurprisingly, there is a significant gap between the runtimes of examples
with and without quantifier alternation, mostly due to the time spent in SMT
solvers. For example, in ticket we spend about 43% of the runtime perform-
ing weakenings, but this percentage drops to 1% and 4% for paxos-epr and
flexible-paxos-epr, respectively. This causes the runtime of paxos-epr to
exceed that of ticket by more than an order of magnitude, although its fix-
point computation considers fewer formulas and actually spends less time weak-
ening. Similarly, in cache we manage to prove a fixpoint of a hundred thousand
formulas in about an hour and spend a third of it weakening formulas, while
multi-paxos-epr and fast-paxos-epr time out, although they consider far
fewer formulas and spend a negligible amount of time weakening.

Next, we observe that the use of LSet significantly reduces time spent in weak-
ening, leading to more than an order of magnitude difference even in moderate
examples, e.g., ticket and paxos-epr. In terms of the total fixpoint computa-
tion time, in examples where the runtime is small or dominated by the SMT
solvers, the effect might be negligible, but otherwise the speedup is significant.
For example, cache is not solved within the 3-hour limit with a naive data struc-
ture; it gets stuck after reaching ∼ 20,000 formulas in the abstraction, whereas
using LSet it is solved in about an hour while handling more than ten times
the number of formulas. Similarly, in the two unsolved examples where SMT
calls seem to be the bottleneck (multi-paxos-epr and fast-paxos-epr), using
a naive data structure causes weakening to become the bottleneck and time out.

Finally, the remaining timeouts, learning-switch, stoppable-paxos-epr,
and vertical-paxos-epr, are the only examples where the weakening pro-
cess itself is the bottleneck. These are cases where the language induced by
the human-written invariant, using the constraining parameters of bounded
languages, create a inefficient weakening process. The cause for this is either
a profusion of literals in the basis language (>600 in learning-switch and

104 E. Frenkel et al.

Table 1. Symbolic abstraction over invariant inference benchmarks with a time limit of
3 h (10800 s). We describe the bounded language underlying the abstract domain of each
example, including its approximate size, and report the runtime of our technique—with
and without using LSet—along with some statistics. For reference, we provide runtimes
of two state-of-the-art safety-verification tools. ‘T/O’ indicates a timeout, and ‘N/A’
indicates that the example was not reported by the respective tool.

Example Language Runtime
(sec)

LSet % in W Lfp. Size Max. Size Safety (sec)

quant k n size P-FOL-IC3 DuoAI

lockserv ∀2 1 3 104 0.4 ± 0.1 � 6 ± 1 % 12 28 ± 7 19 1.9
0.5 ± 0.1 – 6 ± 1 % 29 ± 3

toy-consensus-
forall

∀3 1 3 103 0.2 ± 0.0 � 9 ± 2 % 5 18 ± 5 4 1.9

0.2 ± 0.0 – 7 ± 1 % 18 ± 4

ring-id ∀3 1 3 105 1.6 ± 0.1 � 16 ± 1 % 97 182 ± 22 7 3.5
1.9 ± 0.1 – 20 ± 1 % 189 ± 22

sharded-kv ∀5 1 3 104 0.5 ± 0.1 � 8 ± 0 % 20 26 ± 2 8 1.9
0.5 ± 0.0 – 8 ± 1 % 26 ± 4

ticket ∀4 1 5 109 32.6 ± 3.3 � 43 ± 7 % 2621 8531 ± 119 23 23.9
862.2 ± 21.9 – 97 ± 0 % 8533 ± 121

learning-
switch

∀4 1 4 1011 T/O � 98 % – 9576194 76 52.4

T/O – 100 % 5998
consensus-
wo-decide

∀3 1 3 106 3.0 ± 0.2 � 19 ± 1 % 41 717 ± 109 50 3.9

4.0 ± 0.6 – 38 ± 4 % 724 ± 43

consensus-
forall

∀4 1 3 106 3.5 ± 0.4 � 21 ± 2 % 51 740 ± 114 1980 11.9

5.1 ± 0.9 – 40 ± 6 % 708 ± 82

cache ∀6 1 5 1011 4029.4 ± 220.7 � 30 ± 2 % 106348 271255 ± 13081 2492 N/A
T/O – 100 ± 0 % 19183 ± 9466

sharded-kv-
no-lost-keys

∀1(∃∀)2 1 2 102 0.3 ± 0.0 � 3 ± 0 % 4 4 ± 0 4 2.1

0.3 ± 0.0 – 2 ± 0 % 4 ± 0

toy-consensus-
epr

∀2(∃∀)1∀1 1 3 104 0.3 ± 0.0 � 9 ± 1 % 5 18 ± 4 4 2.6

0.3 ± 0.0 – 7 ± 1 % 19 ± 3

consensus-
epr

(∃∀)1∀4 1 3 106 5.1 ± 0.7 � 17 ± 2 % 51 800 ± 137 37 4.8

8.8 ± 1.7 – 46 ± 8 % 783 ± 88

client-
server-ae

∀2(∃∀)1 2 1 103 0.2 ± 0.0 � 4 ± 1 % 2 5 ± 0 4 1.5

0.2 ± 0.1 – 3 ± 1 % 5 ± 0

paxos-epr ∀4(∃∀)2 2 3 1011 621.5 ± 246.8 � 1 ± 1 % 1438 1693 ± 203 920 60.4
789.6 ± 285.5 – 11 ± 3 % 1737 ± 168

flexible-
paxos-epr

∀4(∃∀)2 2 3 1011 166.7 ± 29.3 � 4 ± 1 % 964 1622 ± 177 418 78.7

235.6 ± 31.7 – 35 ± 8 % 1575 ± 196

multi-
paxos-epr

∀5(∃∀)3 2 3 1030 T/O � 2 % – 27508 4272 1549

T/O – 100 % 6400
fast-
paxos-epr

∀4(∃∀)3 2 4 1014 T/O � 1 % – 16290 9630 26979

T/O – 99 % 13683
stoppable-
paxos-epr

∀7(∃∀)3 2 5 10155 T/O � 100 % – 37529 >18297 4051

T/O – 100 % 3331
vertical-
paxos-epr

∀4(∃∀)3 3 5 1054 T/O � 100 % – 112990 T/O T/O

T/O – 100 % 2576

Efficient Implementation of an Abstract Domain 105

stoppable-paxos-epr, less than 200 in all other examples), or a very expressive
language (e.g., vertical-paxos-epr uses 3-pDNF, whereas all other examples
use 1- and 2-pDNF). For these examples, it might be necessary to restrict the
languages in additional ways, e.g., as was done in [30]. Our experience, however,
is that the more significant bottleneck for computing least fixpoints for the most
complicated examples is the SMT queries.

7 Related Work

Many recent works tackle invariant inference in first-order logic [9–11,14,15,17,
26,30,31]. These works are all property-guided and employ sophisticated heuris-
tics to guide the search for invariants. Of these works, the most closely related
to ours are [30,31]. DistAI [31] is restricted to universally quantified invariants,
while DuoAI [30] infers invariants with quantifier alternations. DuoAI defines a
“minimum implication graph” enumerating all formulas in a first-order logical
language, whose transitive closure can be understood as a specific subsump-
tion relation, and where replacing a node with its successors can be understood
as a form of weakening. DuoAI’s “top-down refinement” precisely computes the
strongest invariant in the logical domain. However, this computation does not
scale to complex examples such as all Paxos variants, in which case “bottom-
up refinement” is used—a property-guided process that does not compute the
strongest invariant. Our approach based on a generic subsumption relation is
both more principled and more scalable, as it succeeds in computing the least
fixpoint for some Paxos variants.

Another work concerning a least-fixpoint in a logical domain is [19], which
computes the set of propositional clauses up to length k implied by a given for-
mula, minimized by the subsumption relation �=⊆; a trie-based data structure
is used to maintain the formulas, weaken them, and check subsumption of a for-
mula by the entire set. Both that data structure and LSet[∨k[·]] bear similarity
to UBTrees [12], also employed in [3], which store sets and implement filters
for subsets and supersets. However, while UBTrees and LSets always maintain
ordered tree paths, these are unordered in [19], which allows [19] to perform
weakening directly on the data structure, whereas we need to remove the unsat-
isfied disjunctions, weaken, and insert them. On the other hand, this makes
filtering for subsets in UBTrees and LSets more efficient. Also note that LSet is
more general than both, since it supports a more general subsumption relation.

8 Conclusion

We have developed key algorithms and data structures for working with a logi-
cal abstract domain of quantified first-order formulas. Our fundamental idea is
using a well-defined subsumption relation and a weaken operator induced by it.
This idea makes the abstract domain feasible, and it is also extensible: while we
explored one possible subsumption relation and its associated weaken operator,
future work may explore others, representing different tradeoffs between pruning

106 E. Frenkel et al.

and weakening. We demonstrated the feasibility of our approach by computing
the least abstract fixpoint for several distributed protocols modeled in first-order
logic—a challenging application domain where previously only property-directed
heuristics have been successful. For some of the examples in our evaluation, the
computation still times out. In some of these cases, SMT queries (for comput-
ing CTIs) become the bottleneck. Dealing with this bottleneck is an orthogonal
problem that we leave for future work. For the examples with the largest log-
ical languages, abstract domain operations remain the bottleneck, and future
work may either scale the abstract domain implementation to such languages or
explore combinations with property-directed approaches.

Acknowledgments. We thank Alex Fischman and James R. Wilcox for their contri-
butions to the Flyvy verification tool. We thank Raz Lotan, Kenneth McMillan, and
the anonymous reviewers for their helpful and insightful comments.

The research leading to these results has received funding from the European
Research Council under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No [759102-SVIS]). This research was partially supported
by the Israeli Science Foundation (ISF) grant No. 2117/23.

References

1. Ball, T., et al.: Vericon: towards verifying controller programs in software-defined
networks. In: O’Boyle, M.F.P., Pingali, K. (eds.) ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2014, Edinburgh,
United Kingdom, 09–11 June 2014, pp. 282–293. ACM (2014). https://doi.org/10.
1145/2594291.2594317

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

3. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI, vol. 8, pp.
209–224 (2008)

4. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.
512973

5. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Aho,
A.V., Zilles, S.N., Rosen, B.K. (eds.) Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Texas, USA,
January 1979, pp. 269–282. ACM Press (1979). https://doi.org/10.1145/567752.
567778

6. Feldman, Y.M.Y., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded
quantifier instantiation for checking inductive invariants. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 76–95. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5_5

https://doi.org/10.1145/2594291.2594317
https://doi.org/10.1145/2594291.2594317
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-662-54577-5_5

Efficient Implementation of an Abstract Domain 107

7. Frenkel, E., Chajed, T., Padon, O., Shoham, S.: Efficient implementation of an
abstract domain of quantified first-order formulas (artifact) (2024). https://doi.
org/10.5281/zenodo.10938367

8. Frenkel, E., Chajed, T., Padon, O., Shoham, S.: Efficient implementation of
an abstract domain of quantified first-order formulas (extended version) (2024).
https://doi.org/10.48550/arXiv.2405.10308

9. Goel, A., Sakallah, K.: On symmetry and quantification: a new approach to ver-
ify distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A.,
Perez, I. (eds.) NFM 2021. LNCS, vol. 12673, pp. 131–150. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76384-8_9

10. Goel, A., Sakallah, K.A.: Towards an automatic proof of Lamport’s Paxos. In:
FMCAD, pp. 112–122. IEEE (2021). https://doi.org/10.34727/2021/isbn.978-3-
85448-046-4_20

11. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: It’s a small (enough) world after all. In: Mickens, J., Teixeira, R. (eds.)
18th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2021, 12–14 April 2021, pp. 115–131. USENIX Association (2021). https://
www.usenix.org/conference/nsdi21/presentation/hance

12. Hoffmann, J., Koehler, J.: A new method to index and query sets. In: IJCAI,
vol. 99, pp. 462–467 (1999)

13. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_53

14. Karbyshev, A., Bjørner, N.S., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM 64(1),
7:1–7:33 (2017). https://doi.org/10.1145/3022187

15. Koenig, J.R., Padon, O., Shoham, S., Aiken, A.: Inferring Invariants with quanti-
fier alternations: taming the search space explosion. In: TACAS 2022. LNCS, vol.
13243, pp. 338–356. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99524-9_18

16. Löding, C., Madhusudan, P., Peña, L.: Foundations for natural proofs and quan-
tifier instantiation. Proc. ACM Program. Lang. 2(POPL), 10:1–10:30 (2018).
https://doi.org/10.1145/3158098

17. Ma, H., Goel, A., Jeannin, J., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: incre-
mental inference of inductive invariants for verification of distributed protocols. In:
SOSP, pp. 370–384. ACM (2019). https://doi.org/10.1145/3341301.3359651

18. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about program
verification modulo axioms? In: TACAS 2020. LNCS, vol. 12079, pp. 158–177.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_10

19. McMillan, K.: Don’t-care computation using k-clause approximation. In: Proceed-
ings of the IWLS 2005, pp. 153–160 (2005)

20. McMillan, K.L., Padon, O.: Deductive verification in decidable fragments with ivy.
In: Podelski, A. (ed.) SAS 2018. LNCS, vol. 11002, pp. 43–55. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99725-4_4

21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

22. Murali, A., Peña, L., Blanchard, E., Löding, C., Madhusudan, P.: Model-guided
synthesis of inductive lemmas for FOL with least fixpoints. Proc. ACM Program.
Lang. 6(OOPSLA2), 1873–1902 (2022). https://doi.org/10.1145/3563354

https://doi.org/10.5281/zenodo.10938367
https://doi.org/10.5281/zenodo.10938367
https://doi.org/10.48550/arXiv.2405.10308
https://doi.org/10.1007/978-3-030-76384-8_9
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1007/978-3-642-39799-8_53
https://doi.org/10.1145/3022187
https://doi.org/10.1007/978-3-030-99524-9_18
https://doi.org/10.1007/978-3-030-99524-9_18
https://doi.org/10.1145/3158098
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1007/978-3-030-45237-7_10
https://doi.org/10.1007/978-3-319-99725-4_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3563354

108 E. Frenkel et al.

23. Padon, O.: Deductive Verification of Distributed Protocols in First-Order Logic.
Ph.D. thesis, Tel Aviv University (2019)

24. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reason-
ing about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–
108:31 (2017). https://doi.org/10.1145/3140568

25. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: PLDI, pp. 614–630. ACM (2016). https://
doi.org/10.1145/2908080.2908118

26. Padon, O., Wilcox, J.R., Koenig, J.R., McMillan, K.L., Aiken, A.: Induction dual-
ity: primal-dual search for invariants. Proc. ACM Program. Lang. 6(POPL), 1–29
(2022). https://doi.org/10.1145/3498712

27. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_21

28. Taube, M., et al.: Modularity for decidability of deductive verification with appli-
cations to distributed systems. In: PLDI, pp. 662–677. ACM (2018). https://doi.
org/10.1145/3192366.3192414

29. Thakur, A.V.: Symbolic abstraction: algorithms and applications. Ph.D. thesis,
The University of Wisconsin-Madison (2014)

30. Yao, J., Tao, R., Gu, R., Nieh, J.: DuoAI: fast, automated inference of inductive
invariants for verifying distributed protocols. In: Aguilera, M.K., Weatherspoon,
H. (eds.) 16th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2022, Carlsbad, CA, USA, 11–13 July 2022, pp. 485–501. USENIX
Association (2022). https://www.usenix.org/conference/osdi22/presentation/yao

31. Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., Ryan, G.: Distai: data-driven auto-
mated invariant learning for distributed protocols. In: OSDI, pp. 405–421. USENIX
Association (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/3498712
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1145/3192366.3192414
https://www.usenix.org/conference/osdi22/presentation/yao
http://creativecommons.org/licenses/by/4.0/

	Efficient Implementation of an Abstract Domain of Quantified First-Order Formulas
	1 Introduction
	2 Background
	3 Subsumption-Based Representation of Sets of Formulas
	3.1 Bounded First-Order Languages
	3.2 Syntactic Subsumption
	3.3 Canonicalization
	3.4 Representing Sets of Formulas

	4 The Weaken Operator
	4.1 Weakening a Single Canonical Formula
	4.2 Weakening Sets of Formulas
	4.3 Design Consideration and Tradeoffs

	5 Data Structure for Sets of Formulas
	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Experiments
	6.3 Results

	7 Related Work
	8 Conclusion
	References

