
Perennial is the first framework for 
verifying concurrent, crash-safe systems

Example: replicated disk

Verifying concurrent, crash-safe systems with Perennial
Tej Chajed, Joseph Tassarotti*, Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL and *Boston College

func write(a: addr, v: block) {
 lock_address(a)
 d1.write(a, v)
 d2.write(a, v)
 unlock_address(a)
} what if system

crashes here?

func recover() {
 for a in … {
 // copy from d1 to d2
 v, ok := d1.read(a)
 if !ok { continue; }
 d2.write(a, v)
 }
}

what if

disk 1 fails?

func read(a: addr): block {
 lock_address(a)
 v, ok := d1.read(a)
 if !ok {
 v, _ = d2.read(a)
 }
 unlock_address(a)
 return v
}

can this return a
block that isn’t
durable yet?

Replicates disk writes over two unreliable disks

Behaves like a single disk resilient to underlying failures

replication library

read/write

disk 1 disk 2

Despite simplicity, correctness is subtle

Perennial’s techniques address challenges
integrating crash safety into concurrency reasoning

Perennial’s Go mail server was easier to verify

We wrote Goose to implement storage systems
in Go and verify them in Coq with Perennial

Recovery interrupts
critical sections

➡ leases

Crashes wipe 
in-memory state

➡ memory versioning

Perennial CSPEC

mail server
proof 3,400 4,000

time 2 weeks

(after framework)

6 months 
(with framework)

code 159 (Go) 215 (Coq)

Perennial proof is both shorter and

shows delivered mail is not lost

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 …
 v, ok := d1.read(a)
 if !ok { continue; }
 d2.write(a, v)
 …
}

write(a, v)
tid:
user's view:

crash

write(a, v)
tid: Recovery logically completes the pending write

➡ use recovery helping to prove this is correct

Write was pending when system crashed

other challenges
and techniques:

Storage systems need concurrency for performance

https://chajed.io/perennial

compared with CSPEC [OSDI ’18]

https://chajed.io/papers/perennial:sosp2019.pdf
https://chajed.io/perennial
https://chajed.io/perennial

