Verifying concurrent, crash-safe systems with Perennial

Te] Chajed, Joseph Tassarotti™, Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL and *Boston College

Storage systems need concurrency for performance

Example: replicated disk |1 reagsurice
Replicates disk writes over two unreliable disks

Behaves like a single disk resilient to underlying failures W)

Despite simplicity, correctness Is subtle

func write(a: addr, v: block) { func read(a: addr): block { func recover() {
lock address(a) lock address(a) for a in .. {
dl.write(a, v) v, ok := dl.read(a) // copy from dl to d2
d2.write(a, v) N\ 1if 'ok { v, ok := dl.read(a) o
unlock address(a) . v, = d2.read(a) : if !'ok { continue; } whati
\ what if system) can this re’FurrJ a 2. write(a. v) sk 1 falls?
crashes here? unlock address(a) block that isn't } |
return v durable yet’? }

Perennial is the first framework for

verifying concurrent, crash-safe systems

Perennial’s techniques address challenges
iIntegrating crash safety into concurrency reasoning

func write(a: addr, user's view:
V' bloc k) { -tld _ | |
Lock address (o) write(@, v) X Write was pending when system crashed

func recover() {

v, ok := dl.read(a)
if | Ok { Continue; } .tid.

12 write (e V) e LAY Recovery logically completes the pending write
\ S) use recovery helping tO prove .thIS |S COrreCt

other challenges Recovery interrupts Crashes wipe
and techniques: critical sections INn-memory state

= leases = memory versioning

We wrote Goose to implement storage systems

in Go and verify them in Coq with Perennial

Perennial’s Go mail server was easier to verify
compared with CSPEC [OSDI 18]

e

Berennial Perennial proof is both shorter and
J shows delivered mail is not lost

maill server
proof

3,400

4,000

|
Hime 2 weeks 6 months
(after framework) (with framework) _lll'
code 159 (Go) 215 (Coq)

https://chajed.10/perennial

https://chajed.io/papers/perennial:sosp2019.pdf
https://chajed.io/perennial
https://chajed.io/perennial

